Affordable Access

Publisher Website

Hypocrellin-B acetate as a fluorogenic substrate for enzyme-assisted cell photosensitization.

Authors
Type
Published Article
Journal
Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology
Publication Date
Volume
10
Issue
11
Pages
1783–1790
Identifiers
DOI: 10.1039/c1pp05136a
PMID: 21894341
Source
Medline

Abstract

Photosensitizing molecules (PSs) undergo chemico-physical changes upon addition of suitable substituents, influencing both their photophysical properties and their ability to accumulate into cells. Once inside the cells, the modified PS acts as a fluorogenic substrate: the added substituent is removed by a specific enzyme, restoring the native PS in subcellular sensitive sites. We investigated the photophysical properties and interaction with HeLa cells of Hypocrellin-B (HypB), as native molecule and upon acetate-group addition (HypB-Ac). Chemical modification alters both absorption and fluorescence features of HypB; consequently, the dynamics of the enzyme hydrolysis of HypB-Ac can be monitored through restoring the native HypB spectral properties. At the cellular level, only the HypB emission signal was detected within 5 min of incubation with either HypB or HypB-Ac, allowing a direct comparison of the time courses of their intracellular accumulation. Plateau values were reached within 15 min of incubation with both compounds, the emission signals being significantly higher in HypB-Ac than in HypB treated cells. Consistently, imaging showed a rapid appearance of red fluorescence in the cytoplasm, with more abundant bright spots in HypB-Ac treated cells. Both compounds did not induce dark toxicity at concentrations up to 1 × 10(-6) M, while upon irradiation at 480 nm phototoxicity was significantly higher for cells exposed to HypB-Ac than for HypB-loaded cells. These findings suggest an improved efficacy of acetylated HypB to be internalized by cells through membrane trafficking, with a preferential interaction of the photoactive molecules on sensitive intracellular sites. After irradiation, in HypB-Ac treated cells, prominent disorganization of several cytoplasmic organelles such as the endoplasmic reticulum, Golgi apparatus, lysosomes, microfilaments and microtubules were observed.

There are no comments yet on this publication. Be the first to share your thoughts.

Statistics

Seen <100 times
0 Comments