Affordable Access

Hydrophobicity and prediction of the secondary structure of membrane proteins and peptides.

Authors
  • Klevanik, A V
Type
Published Article
Journal
Membrane & cell biology
Publication Date
Jul 01, 2001
Volume
14
Issue
5
Pages
673–697
Identifiers
PMID: 11699870
Source
Medline
License
Unknown

Abstract

Reliability of the hydropathy method to predict the formation of membrane-spanning alpha-helices by integral membrane proteins and peptides whose structure is known from X-ray crystallography is analysed. It is shown that Kyte-Doolittle hydropathy plots do not predict accurately 22 transmembrane alpha-helices in the reaction centres (RC) of the photosynthetic bacteria Rhodopseudomonas viridis and Rhodobacter sphaeroides (R-26). The accuracy of prediction for these proteins was improved using an optimised Kyte-Doolittle hydrophobicity scale. However, this hydrophobicity scale did not improve the predictions for the alphabeta-peptides of the B800-850 (LH2) complexes of the photosynthetic bacteria Rhodopseudomonas acidophila and Rhodospirillum molischianum, which were excluded from the optimisation procedure. The best and worst predictions of membrane-spanning alpha-helices for the RC proteins and LH2 peptides, respectively, were obtained with a propensity scale (PRC) calculated from the amino acid sequences and X-ray data for the RC proteins. A propensity scale (PLH) obtained using the amino acid sequences and X-ray data for the alphabeta-peptides of the LH2 complexes did not give an acceptable prediction of the transmembrane segments in the LH2 peptides; moreover, it markedly contradicted the PRC scale. Amino acids have been concluded to have no significant preference to localisation in transmembrane segments. Therefore, the predictive ability of the hydropathy methodology appears to be limited: the number of transmembrane segments can be correctly calculated for the best case only, and the lengths and positions of membrane-spanning alpha-helices in a protein amino acid sequence can not be predicted exactly.

Report this publication

Statistics

Seen <100 times