Affordable Access

Hybrid subconvexity bounds for $L \left(\tfrac{1}{2}, \text{Sym}^2 f \otimes g\right)$

Authors
  • Holowinsky, Roman
  • Munshi, Ritabrata
  • Qi, Zhi
Type
Preprint
Publication Date
Jan 26, 2014
Submission Date
Jan 26, 2014
Identifiers
arXiv ID: 1401.6695
Source
arXiv
License
Yellow
External links

Abstract

Fix an integer $\kappa\geqslant 2$. Let $P$ be prime and let $k> \kappa$ be an even integer. For $f$ a holomorphic cusp form of weight $k$ and full level and $g$ a primitive holomorphic cusp form of weight $2 \kappa$ and level $P$, we prove hybrid subconvexity bounds for $L \left(\tfrac{1}{2}, \text{Sym}^2 f \otimes g\right)$ in the $k$ and $P$ aspects when $P^{\frac {13} {64} + \delta} < k < P^{\frac 3 8 - \delta}$ for any $0 < \delta < \frac {11} {128}$. These bounds are achieved through a first moment method (with amplification when $P^{\frac {13} {64}} < k \leqslant P^{\frac 4 {13}}$).

Report this publication

Statistics

Seen <100 times