Affordable Access

How to compute Selberg-like integrals?

Authors
  • Deneufchâtel, Matthieu
Publication Date
Jul 13, 2010
Source
HAL-SHS
Keywords
Language
English
License
Unknown
External links

Abstract

In this paper, we describe a general method for computing Selberg-like integrals based on a formula, due to Kaneko, for Selberg-Jack integrals. The general principle consists in expanding the integrand \emph{w.r.t.} the Jack basis, which is obtained by a Gram-Schmidt orthogonalization process. The resulting algorithm is not very efficient because of this decomposition. But for special cases, the coefficients admit a closed form. As an example, we study the case of the power-sums since for which the coefficients are obtained by manipulating generating series by means of transformations of alphabets. Furthermore, we prove that the integral is a rational function in the number of variables which allows us to study asymptotics. As an application, we investigate the asymptotic behavior when the integrand involves Jack polynomials and power sums.

Report this publication

Statistics

Seen <100 times