Affordable Access

Publisher Website

Homology and topological full groups of etale groupoids on totally disconnected spaces

Authors
Type
Preprint
Publication Date
Submission Date
Identifiers
DOI: 10.1112/plms/pdr029
Source
arXiv
External links

Abstract

For almost finite groupoids, we study how their homology groups reflect dynamical properties of their topological full groups. It is shown that two clopen subsets of the unit space has the same class in H_0 if and only if there exists an element in the topological full group which maps one to the other. It is also shown that a natural homomorphism, called the index map, from the topological full group to H_1 is surjective and any element of the kernel can be written as a product of four elements of finite order. In particular, the index map induces a homomorphism from H_1 to K_1 of the groupoid C^*-algebra. Explicit computations of homology groups of AF groupoids and etale groupoids arising from subshifts of finite type are also given.

There are no comments yet on this publication. Be the first to share your thoughts.

Statistics

Seen <100 times
0 Comments