Affordable Access

The homogeneous geometries of real hyperbolic space

Authors
  • Lopez, Marco Castrillon
  • Gadea, P. M.
  • Swann, Andrew
Type
Preprint
Publication Date
Nov 24, 2011
Submission Date
Nov 24, 2011
Identifiers
arXiv ID: 1111.5723
Source
arXiv
License
Yellow
External links

Abstract

We describe the holonomy algebras of all canonical connections of homogeneous structures on real hyperbolic spaces in all dimensions. The structural results obtained then lead to a determination of the types, in the sense of Tricerri and Vanhecke, of the corresponding homogeneous tensors. We use our analysis to show that the moduli space of homogeneous structures on real hyperbolic space has two connected components.

Report this publication

Statistics

Seen <100 times