Affordable Access

High Volumetric Energy and Power Density Li2TiSiO5 Battery Anodes via Graphene Functionalization

Authors
  • Lim, Jin-Myoung
  • Kim, Sungkyu
  • Luu, Norman S.
  • Downing, Julia R.
  • Tan, Mark T.Z.
  • Park, Kyu-Young
  • Hechter, Jacob C.
  • Dravid, Vinayak P.
  • He, Kai
  • Hersam, Mark C.
Publication Date
Aug 01, 2020
Source
OASIS@POSTECH
Keywords
License
Unknown
External links

Abstract

The realization of lithium-ion battery (LIB) anodes with high volumetric energy densities and minimal Li plating at high rates remains a key challenge for emerging technologies, including electric vehicles and grid-level energy storage. Here, we present graphene-functionalized Li2TiSiO5 (G-LTSO) as a high volumetric energy and power density anode for LIBs. G-LTSO forms a dense electrode structure with electronically and ionically conductive networks that deliver superior electrochemical performance. Upon lithiation, in situ transmission electron microscopy reveals that graphene functionalization yields minimal structural changes compared with pristine LTSO, resulting in high cycling stability. Furthermore, G-LTSO exhibits not only high charge and discharge capacities but also low overpotentials at high rates with minimal voltage fading due to reduced formation of a solid-electrolyte interphase. The combination of highly compacted electrode morphology, stable highrate electrochemistry, and low operating potential enables G-LTSO to achieve exceptional volumetric energy and power densities that overcome incumbent challenges for LIBs. / 1 / 1 / N / scie / scopus

Report this publication

Statistics

Seen <100 times