Affordable Access

High Oxygen Reduction Reaction Performances of Cathode Materials Combining Polyoxometalates, Coordination Complexes, and Carboneous Supports

Authors
  • Zhang, Shuangshuang
  • Oms, Olivier
  • Hao, Long
  • Liu, Rongji
  • Wang, Meng
  • Zhang, Yaqin
  • He, Hong-Yon
  • Dolbecq, Anne
  • Marrot, Jerome
  • Keita, Bineta
  • Zhi, Linjie
  • Mialane, Pierre
  • Li, Bin
  • Zhang, Guangjin
Publication Date
Nov 08, 2017
Source
Institutional Repository of Institute of Process Engineering, CAS (IPE-IR)
Keywords
License
Unknown
External links

Abstract

<p> A series of carbonaceous-supported precious metal-free polyoxometalate (POM)-based composites which can be easily synthesized on a large scale was shown to act as efficient cathode materials for the oxygen reduction reaction (ORR) in neutral or basic media via a four-electron mechanism with high durability. Moreover, exploiting the versatility of the considered system, its activity was optimized by the judicious choice of the 3d metals incorporated in the {(PW9)(2)M-7} (M = Co, Ni) POM core, the POM counterions and the support (thermalized triazine-based frameworks (TTFs), fluorine doped TTF (TTF-F), reduced graphene oxide, or carbon Vulcan XC-72. In particular, for {(PW9)(2)Ni-7}/{Cu(ethylenediamine)(2)}/TTF-F, the overpotential required to drive the ORR compared well with those of Pt/C. This outstanding ORR electrocatalytic activity is linked with two synergistic effects due to the binary combination of the Cu and Ni centers and the strong interaction between the POM molecules and the porous and highly conducting TTF-F framework. To our knowledge, {(PW9)(2)Ni-7}/{Cu(ethylenediamine)(2)}/TTF-F represents the first example of POM-based noble-metal-free ORR electrocatalyst possessing both comparable ORR electrocatalytic activity and much higher stability than that of Pt/C in neutral medium.</p>

Report this publication

Statistics

Seen <100 times