Affordable Access

Hair cycle-dependent expression of corticotropin-releasing factor (CRF) and CRF receptors in murine skin.

Authors
  • Roloff, B
  • Fechner, K
  • Slominski, A
  • Furkert, J
  • Botchkarev, V A
  • Bulfone-Paus, S
  • Zipper, J
  • Krause, E
  • Paus, R
Type
Published Article
Journal
FASEB journal : official publication of the Federation of American Societies for Experimental Biology
Publication Date
Mar 01, 1998
Volume
12
Issue
3
Pages
287–297
Identifiers
PMID: 9506472
Source
Medline
License
Unknown

Abstract

We demonstrate the presence and hair cycle-dependent expression of corticotropin-releasing factor (CRF) and CRF receptors (CRF-R) in C57BL/6 mouse skin. To correlate this with a physiological, developmentally controlled tissue remodeling process, we have analyzed CRF and CRF-R expression during defined stages of the murine hair cycle with its rhythmic changes between growth (anagen), regression (catagen), and resting (telogen). Using reversed-phase HPLC combined with two independent anti-CRF radioimmunoassays, we have identified CRF in murine skin. Maximal CRF levels were found in anagen III-IV skin, and minimal values were detected in catagen and telogen skin. By immunofluorescence, maximal CRF immunoreactivity (CRF-IR) was seen in the basal epidermis, nerve bundles of skin, the outer root sheath and matrix region of anagen IV-VI follicles, and in defined sections of their perifollicular neural network, whereas catagen and telogen skin displayed minimal CRF-IR. Using quantitative autoradiography and 125I-CRF as a tracer, high-affinity binding sites for CRF were detected in murine skin. The highest density of specific binding sites was detected in the panniculus carnosus, the epidermis, and the hair follicle. CRF-R type 1 (CRF-R1) IR was detected by immunohistology mainly in the outer root sheath, hair matrix, and dermal papilla of anagen VI follicles, as well as in the inner and outer root sheaths of early catagen follicles. CRF-R1 expression was also hair cycle dependent. Therefore, in normal murine skin, the CRF-CRF-R signaling system may operate as an additional neuroendocrine pathway regulating skin functions, possibly in the context of cutaneous stress responses.

Report this publication

Statistics

Seen <100 times