Affordable Access

Group II self-splicing introns in bacteria.

Authors
  • Ferat, J L
  • Michel, F
Type
Published Article
Journal
Nature
Publication Date
Jul 22, 1993
Volume
364
Issue
6435
Pages
358–361
Identifiers
PMID: 7687328
Source
Medline
License
Unknown

Abstract

Like nuclear premessenger introns, group II self-splicing introns are excised from primary transcripts as branched molecules, containing a 2'-5' phosphodiester bond. For this reason, it is widely believed that the ribozyme (catalytic RNA) core of group II introns, or some evolutionarily related molecule, gave rise to the RNA components of the spliceosomal splicing machinery of the eukaryotic nucleus. One difficulty with this hypothesis has been the restricted distribution of group II introns. Unlike group I self-splicing introns, which interrupt not only organelle primary transcripts, but also some bacterial and nuclear genes, group II introns seemed to be confined to mitochondrial and chloroplast genomes (reviewed in ref. 6). We now report the discovery of group II introns both in cyanobacteria (the ancestors of chloroplasts) and the gamma subdivision of purple bacteria, or proteobacteria, whose alpha subdivision probably gave rise to mitochondria. At least one of these introns actually self-splices in vitro.

Report this publication

Statistics

Seen <100 times