On the Group of Continuous Automorphisms of Some Profinite Groups
- Authors
- Type
- Published Article
- Journal
- Lobachevskii Journal of Mathematics
- Publisher
- Pleiades Publishing
- Publication Date
- Mar 21, 2018
- Volume
- 39
- Issue
- 2
- Pages
- 243–251
- Identifiers
- DOI: 10.1134/S1995080218020191
- Source
- Springer Nature
- Keywords
- License
- Yellow
Abstract
We prove some conditions on a given abstract group G, such that the group Autc(G^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat G$$\end{document}) of the continuous automorphisms of the profinite completion G^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat G$$\end{document} of G endowed with the congruence subgroup topology, is profinite. Also, for a given abstract group G, if Autc(G^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat G$$\end{document}) is profinite, then we establish relations betweenG, Aut(G), Aut(G)^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\widehat {Aut(G)}$$\end{document}, and Autc(G^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat G$$\end{document}) when each of these groups is endowed with appropriate topology. Finally, we applied the obtained results to the class of one-relator groups given by the presentation Gmn = 〈a, b; [am, bn] = 1〉 (m > 1,n > 1).