Affordable Access

Glycerol-Specific Revertants of a Phosphoenolpyruvate Phosphotransferase Mutant: Suppression by the Desensitization of Glycerol Kinase to Feedback Inhibition

Publication Date
  • Biology


Glycerol-specific revertants were isolated from a phosphoenolpyruvate phosphotransferase mutant lacking enzyme I activity. Sixteen of the eighteen separately derived revertants were found to synthesize a fully active glycerol kinase no longer subject to feedback inhibition by fructose 1,6-diphosphate. The suppressor mutation mapped at the known glpK locus. When the fructose, 1,6-diphosphate-insensitive kinase allele was transduced into a strain producing the glp enzymes constitutively, cells of the resultant strain were susceptible to killing by glycerol if this compound was added to a culture growing exponentially in casein hydrolysate. This phenomenon had been previously described for a strain which had a constitutive glycerol kinase refractory to feedback inhibition, but isolated by a different procedure. It is suggested that the suppression of the growth defect on glycerol in the enzyme I− mutant by the fructose 1,6-diphosphate-insensitive kinase is achieved by increasing the in vivo catalytic potential of glycerol kinase. This increased activity would allow more rapid conversion of glycerol to l-α-glycerophosphate, the true inducer of the glp system. The enzyme I defect in the parental strain impaired the inducibility of the glp system so that the normal basal catalytic activity of the kinase was insufficient to insure induction by glycerol.


Seen <100 times