Affordable Access

Glucosidase I, a transmembrane endoplasmic reticular glycoprotein with a luminal catalytic domain.

Authors
  • 1
Type
Published Article
Journal
The Journal of biological chemistry
Publication Date
Volume
266
Issue
25
Pages
16587–16593
Identifiers
PMID: 1885588
Source
Medline

Abstract

We have analyzed the functional domain structure of rat mammary glucosidase I, an enzyme involved in N-linked glycoprotein processing, using biochemical and immunological approaches. The enzyme contains a high mannose type sugar chain that can be cleaved by endo-beta-N-acetyl-D-glucosaminidase H without significantly affecting the catalytic activity. Based on trypsin digestion pattern and the data on membrane topography, glucosidase I constitutes a single polypeptide chain of 85 kDa with two contiguous domains: a membrane-bound domain that anchors the protein to the endoplasmic reticulum and a luminal domain. A catalytically active 39-kDa domain could be released from membranes by limited proteolysis of saponin-permeabilized membranes with trypsin. This domain appeared to contain the active site of the enzyme and had the ability to bind to glucosidase I-specific affinity gel. Phase partitioning with Triton X-114 indicated the amphiphilic nature of the native enzyme, consistent with its location as an integral membrane protein, whereas the 39-kDa fragment partitioned in the aqueous phase, a characteristic of soluble polypeptide. These results indicate that glucosidase I is a transmembrane protein with a luminally oriented catalytic domain. Such an orientation of the catalytic domain may facilitate the sequential processing of asparagine-linked oligosaccharide, soon after its transfer en bloc by the oligosaccharyl transferase complex in the lumen of endoplasmic reticulum.

There are no comments yet on this publication. Be the first to share your thoughts.

Statistics

Seen <100 times
0 Comments