Affordable Access

Genotoxic and Anatomical Deteriorations Associated with Potentially Toxic Elements Accumulation in Water Hyacinth Grown in Drainage Water Resources

Authors
  • Moghanm, Farahat S
  • El-Banna, Antar
  • El-Esawi, Mohamed A
  • Abdel-Daim, Mohamed M
  • Mosa, Ahmed
  • Abdelaal, Khaled AA
Publication Date
Mar 10, 2020
Source
Apollo - University of Cambridge Repository
Keywords
Language
English
License
Green
External links

Abstract

<jats:p>Potentially toxic elements (PTEs)-induced genotoxicity on aquatic plants is still an open question. Herein, a single clone from a population of water hyacinth covering a large distribution area of Nile River (freshwater) was transplanted in two drainage water resources to explore the hazardous effect of PTEs on molecular, biochemical and anatomical characters of plants compared to those grown in freshwater. Inductivity Coupled Plasma (ICP) analysis indicated that PTEs concentrations in water resources were relatively low in most cases. However, the high tendency of water hyacinth to bio-accumulate and bio-magnify PTEs maximized their concentrations in plant samples (roots in particular). A Random Amplified Polymorphic DNA (RAPD) assay showed the genotoxic effects of PTEs on plants grown in drainage water. PTEs accumulation caused substantial alterations in DNA profiles including the presence or absence of certain bands and even the appearance of new bands. Plants grown in drainage water exhibited several mutations on the electrophoretic profiles and banding pattern of total protein, especially proteins isolated from roots. Several anatomical deteriorations were observed on PTEs-stressed plants including reductions in the thickness of epidermis, cortex and endodermis as well as vascular cylinder diameter. The research findings of this investigation may provide some new insights regarding molecular, biochemical and anatomical responses of water hyacinth grown in drainage water resources.</jats:p>

Report this publication

Statistics

Seen <100 times