Affordable Access

Access to the full text

Genome sequence of Malania oleifera, a tree with great value for nervonic acid production

  • Xu, Chao-Qun
  • Liu, Hui
  • Zhou, Shan-Shan
  • Zhang, Dong-Xu
  • Zhao, Wei
  • Wang, Sihai
  • Chen, Fu
  • Sun, Yan-Qiang
  • Nie, Shuai
  • Jia, Kai-Hua
  • Jiao, Si-Qian
  • Zhang, Ren-Gang
  • Yun, Quan-Zheng
  • Guan, Wenbin
  • Wang, Xuewen
  • Gao, Qiong
  • Bennetzen, Jeffrey L.
  • Maghuly, Fatemeh
  • Porth, Ilga
  • Van de Peer, Yves
  • And 3 more
Publication Date
Jan 01, 2019
DOI: 10.1093/gigascience/giy164
DiVA - Academic Archive On-line
External links


Background Malania oleifera, a member of the Olacaceae family, is an IUCN red listed tree, endemic and restricted to the Karst region of southwest China. This tree's seed is valued for its high content of precious fatty acids (especially nervonic acid). However, studies on its genetic makeup and fatty acid biogenesis are severely hampered by a lack of molecular and genetic tools. Findings We generated 51 Gb and 135Gb of raw DNA sequences, using Pacific Biosciences (PacBio) single-molecule real-time and 10x Genomics sequencing, respectively. A final genome assembly, with a scaffold N50 size of 4.65 Mb and a total length of 1.51Gb, was obtained by primary assembly based on PacBio long reads plus scaffolding with 10x Genomics reads. Identified repeats constituted approximate to 82% of the genome, and 24,064 protein-coding genes were predicted with high support. The genome has low heterozygosity and shows no evidence for recent whole genome duplication. Metabolic pathway genes relating to the accumulation of long-chain fatty acid were identified and studied in detail. Conclusions Here, we provide the first genome assembly and gene annotation for M. oleifera. The availability of these resources will be of great importance for conservation biology and for the functional genomics of nervonic acid biosynthesis.

Report this publication


Seen <100 times