Affordable Access

deepdyve-link
Publisher Website

Genetically encoded pH-indicators reveal activity-dependent cytosolic acidification of Drosophila motor nerve termini in vivo.

Authors
  • Rossano, Adam J1
  • Chouhan, Amit K
  • Macleod, Gregory T
  • 1 Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
Type
Published Article
Journal
The Journal of Physiology
Publisher
Wiley (Blackwell Publishing)
Publication Date
Apr 01, 2013
Volume
591
Issue
7
Pages
1691–1706
Identifiers
DOI: 10.1113/jphysiol.2012.248377
PMID: 23401611
Source
Medline
License
Unknown

Abstract

All biochemical processes, including those underlying synaptic function and plasticity, are pH sensitive. Cytosolic pH (pH(cyto)) shifts are known to accompany nerve activity in situ, but technological limitations have prevented characterization of such shifts in vivo. Genetically encoded pH-indicators (GEpHIs) allow for tissue-specific in vivo measurement of pH. We expressed three different GEpHIs in the cytosol of Drosophila larval motor neurons and observed substantial presynaptic acidification in nerve termini during nerve stimulation in situ. SuperEcliptic pHluorin was the most useful GEpHI for studying pH(cyto) shifts in this model system. We determined the resting pH of the nerve terminal cytosol to be 7.30 ± 0.02, and observed a decrease of 0.16 ± 0.01 pH units when the axon was stimulated at 40 Hz for 4 s. Realkalinization occurred upon cessation of stimulation with a time course of 20.54 ± 1.05 s (τ). The chemical pH-indicator 2,7-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein corroborated these changes in pH(cyto). Bicarbonate-derived buffering did not contribute to buffering of acid loads from short (≤ 4 s) trains of action potentials but did buffer slow (~60 s) acid loads. The magnitude of cytosolic acid transients correlated with cytosolic Ca(2+) increase upon stimulation, and partial inhibition of the plasma membrane Ca(2+)-ATPase, a Ca(2+)/H(+) exchanger, attenuated pH(cyto) shifts. Repeated stimulus trains mimicking motor patterns generated greater cytosolic acidification (~0.30 pH units). Imaging through the cuticle of intact larvae revealed spontaneous pH(cyto) shifts in presynaptic termini in vivo, similar to those seen in situ during fictive locomotion, indicating that presynaptic pH(cyto) shifts cannot be dismissed as artifacts of ex vivo preparations.

Report this publication

Statistics

Seen <100 times