Affordable Access

Genetic characterization and sequence heterogeneity of a canadian isolate of Swine hepatitis E virus.

  • Pei, Yanlong
  • Yoo, Dongwan
Published Article
Journal of clinical microbiology
Publication Date
Nov 01, 2002
PMID: 12409369


Swine hepatitis E virus (HEV) is a newly identified potentially zoonotic agent that is possibly transmitted to humans from pigs. Swine HEV is prevalent in pig populations and does not cause abnormal clinical symptoms in infected pigs, further implicating a likelihood of a risk of transmission to humans by normal contact. To date in North America, only one strain of swine HEV (strain US swine) has been fully sequenced. In the present study, we identified a swine HEV isolate from pigs in Canada, designated the Arkell strain, and determined the full length of the genomic sequence. The genome of Canadian strain Arkell consisted of 7,242 nucleotides, excluding the poly(A) tail of at least 15 A residues. The genome contained three open reading frames (ORFs), ORF1, ORF2, and ORF3, which had coding capacities for proteins of 1,708, 660, and 122 amino acids, respectively. Comparative analysis of the full-length genomic sequence indicated that the sequence of strain Arkell was distinct from those of all other known HEV isolates by 13 to 27% and shared the highest degrees of identity with human HEV isolates US-1 and US-2, HEV isolate US swine, and the human and swine HEV isolates recently isolated in Japan. On the basis of sequence similarities and phylogenetic analyses, HEV strain Arkell was grouped into genotype 3. The sequence of the Arkell swine HEV isolate differed from those of HEV isolate US swine and HEV isolate Japan swine by 13 and 14%, respectively. To date, two isolates of swine HEV (isolates Arkell and SK3 [D. Yoo et al., Clin. Diagn. Lab. Immunol. 8:1213-1219, 2001]) have been identified in Canadian pigs, and their sequences also differ from each other by 11.8%. Our studies indicate that, as with human HEV strains, swine HEV isolates exhibit extensive genetic heterogeneity.

Report this publication


Seen <100 times