Affordable Access

Access to the full text

Generation mechanism of cell assembly to store information about hand recognition

Authors
  • Homma, Takahiro
Type
Published Article
Publication Date
Apr 16, 2020
Submission Date
Sep 17, 2019
Identifiers
DOI: 10.1016/j.heliyon.2020.e05347
Source
arXiv
License
Yellow
External links

Abstract

A specific memory is stored in a cell assembly that is activated during fear learning in mice; however, research regarding cell assemblies associated with procedural and habit learning processes is lacking. In modeling studies, simulations of the learning process for hand regard, which is a type of procedural learning, resulted in the formation of cell assemblies. However, the mechanisms through which the cell assemblies form and the information stored in these cell assemblies remain unknown. In this paper, the relationship between hand movements and weight changes during the simulated learning process for hand regard was used to elucidate the mechanism through which inhibitory weights are generated, which plays an important role in the formation of cell assemblies. During the early training phase, trial and error attempts to bring the hand into the field of view caused the generation of inhibitory weights, and the cell assemblies self-organized from these inhibitory weights. The information stored in the cell assemblies was estimated by examining the contributions of the cell assemblies outputs to hand movements. During sustained hand regard, the outputs from these cell assemblies moved the hand into the field of view, using hand-related inputs almost exclusively. Therefore, infants are likely able to select the inputs associated with their hand (that is, distinguish between their hand and others), based on the information stored in the cell assembly, and move their hands into the field of view during sustained hand regard.

Report this publication

Statistics

Seen <100 times