Affordable Access

Generalized-Lush Spaces and the Mazur-Ulam Property

Authors
  • Tan, Dongni
  • Huang, Xujian
  • Liu, Rui
Type
Preprint
Publication Date
Oct 27, 2012
Submission Date
Oct 27, 2012
Identifiers
arXiv ID: 1210.7324
Source
arXiv
License
Yellow
External links

Abstract

We introduce a new class of Banach spaces, called generalized-lush spaces (GL-spaces for short), which contains almost-CL-spaces, separable lush spaces (specially, separable $C$-rich subspaces of $C(K)$), and even the two-dimensional space with hexagonal norm. We obtain that the space $C(K,E)$ of the vector-valued continuous functions is a GL-space whenever $E$ is, and show that the GL-space is stable under $c_0$-, $l_1$- and $l_\infty$-sums. As an application, we prove that the Mazur-Ulam property holds for a larger class of Banach spaces, called local-GL-spaces, including all lush spaces and GL-spaces. Furthermore, we generalize the stability properties of GL-spaces to local-GL-spaces. From this, we can obtain many examples of Banach spaces having the Mazur-Ulam property.

Report this publication

Statistics

Seen <100 times