Affordable Access

Generalized binomial transform applied to the divergent series

Authors
Type
Preprint
Publication Date
Submission Date
Identifiers
arXiv ID: 1511.08616
Source
arXiv
External links

Abstract

The divergent series for a function defined through Lapalce integral and the ground state energy of the quartic anharmonic oscillator to large orders are studied to test the generalized binomial transform which is the renamed version of $\delta$-expansion proposed recently. We show that, by the use of the generalized binomial transform, the values of functions in the limit of zero of an argument is approximately computable from the series expansion around the infinity of the same argument. In the Laplace integral, we investigate the subject in detail with the aid of Mellin transform. In the anharmonic oscillator, we compute the strong coupling limit of the ground state energy and also the expansion coefficients at strong coupling from the weak coupling perturbation series. The obtained result is compared with that of the linear delta expansion.

There are no comments yet on this publication. Be the first to share your thoughts.

Statistics

Seen <100 times
0 Comments