Affordable Access

deepdyve-link deepdyve-link
Publisher Website

Gene regulation in glioblastoma: a combinatorial analysis of microRNAs and transcription factors.

Authors
  • Gong, Xue1
  • Sun, Jingchun
  • Zhao, Zhongming
  • 1 Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA. [email protected]
Type
Published Article
Journal
International journal of computational biology and drug design
Publication Date
Jan 01, 2011
Volume
4
Issue
2
Pages
111–126
Identifiers
DOI: 10.1504/IJCBDD.2011.041006
PMID: 21712563
Source
Medline
License
Unknown

Abstract

Glioblastoma is the most common and most lethal brain tumour in humans. Illustrating the functions being disturbed during carcinogenesis and how they are deregulated is very important for us to understand its underlying mechanism. Transcriptional aberrations may play a vital role in the etiology of glioblastoma, which might be caused by both genomic alterations and other regulation molecules. In this study, we investigated possible cooperative deregulation of microRNAs (miRNAs) and transcription factors (TFs) in glioblastoma, under the hypothesis that miRNAs and TFs might have a combinational regulatory effect on glioblastoma genes. We searched glioblastoma-specific regulatory networks by integrating glioblastoma related miRNAs, TFs and genes, and identified 54 feed-forward loops (FFLs). Follow up functional enrichment analysis of these FFLs uncovered some functions important to carcinogenesis but also some unique functions specific to the FFLs we identified.

Report this publication

Statistics

Seen <100 times