Affordable Access

deepdyve-link
Publisher Website

Gene-ontology enrichment analysis in two independent family-based samples highlights biologically plausible processes for autism spectrum disorders.

Authors
  • Rj, Anney
  • Em, Kenny
  • C, O Dushlaine
  • Bl, Yaspan
  • E, Parkhomenka
  • Jd, Buxbaum
  • J, Sutcliffe
  • M, Gill
  • L, Gallagher
  • Project, Autism Genome
  • Jd, Buxbaum
  • J, Sutcliffe
  • M, Gill
  • L, Gallagher
Type
Published Article
Journal
European Journal of Human Genetics
Publisher
Springer Nature
Volume
19
Issue
10
Pages
1082–1089
Identifiers
DOI: 10.1038/ejhg.2011.75
Source
Nelson Lab
License
Unknown

Abstract

Recent genome-wide association studies (GWAS) have implicated a range of genes from discrete biological pathways in the aetiology of autism. However, despite the strong influence of genetic factors, association studies have yet to identify statistically robust, replicated major effect genes or SNPs. We apply the principle of the SNP ratio test methodology described by O Dushlaine et al to over 2100 families from the Autism Genome Project (AGP). Using a two-stage design we examine association enrichment in 5955 unique gene-ontology classifications across four groupings based on two phenotypic and two ancestral classifications. Based on estimates from simulation we identify excess of association enrichment across all analyses. We observe enrichment in association for sets of genes involved in diverse biological processes, including pyruvate metabolism, transcription factor activation, cell-signalling and cell-cycle regulation. Both genes and processes that show enrichment have previously been examined in autistic disorders and offer biologically plausibility to these findings.

Report this publication

Statistics

Seen <100 times