Affordable Access

Fusion ensembliste de donn´ees pour la surveillance des personnes d´ependantes en habitat intelligent

Authors
  • Amri, Mohamed-Hédi
Publication Date
Dec 07, 2015
Source
HAL-UPMC
Keywords
Language
French
License
Unknown
External links

Abstract

Mes travaux de recherches en thèse s’inscrivent dans le cadre du projet FUIE-monitorâge. L’objectif du projet, réunissant de nombreux partenaires industriels et universitaires, est d’améliorer la prise en charge individualisée et la sécurité du résident dans les établissements d’hébergement pour personnes âgées dépendantes(EHPAD). Dans ce travail, nous avons élaboré une méthode de fusion de données multimodales issues des différents capteurs installés dans un smart home. Ces informations sont utilisées pour la localisation intérieure des personnes afin de surveiller leurs activités journalières. Généralement, les mesures issues des capteurs sont soumises à des incertitudes. Dans nos travaux, ces erreurs sont supposées inconnues mais bornées. En tenant compte de cette hypothèse, une méthode de résolution d’un problème d’estimation d’état est élaborée en se basant sur des calculs ensemblistes. Notre algorithme de filtrage ensembliste comporte deux étapes. La première, dite de prédiction, est basée sur l’utilisation d’un modèle de marche aléatoire avec des hypothèses minimales (vitesse de déplacement maximale) pour prédire la zone où se trouve la personne. La deuxième étape, dite de correction, consiste à utiliser la mesure pour affiner cette zone. Cette étape utilise une technique de propagation de contraintes relâchée, q-relaxed intersection, pour permettre une meilleure robustesse par rapport aux données aberrantes. Notre algorithme est capable de quantifier, par un intervalle, l’incertitude commise sur les positions de cibles en mouvement tout en détectant les défauts de capteurs.

Report this publication

Statistics

Seen <100 times