Affordable Access

Fused Split Inteins: Tools for Introducing Multiple Protein Modifications

Authors
  • Lim, Byung Joon
  • Berkeley, Raymond F
  • Debelouchina, Galia T
Publication Date
Jan 01, 2020
Source
eScholarship - University of California
Keywords
License
Unknown
External links

Abstract

The split inteins from the DnaE cyanobacterial family are efficient and versatile tools for protein engineering and chemical biology applications. Their ultrafast splicing kinetics allow for the efficient production of native proteins from two separate polypeptides both in vitro and in cells. They can also be used to generate proteins with C-terminal thioesters for downstream applications. In this chapter, we describe a method based on a genetically fused version of the DnaE intein Npu for the preparation of doubly modified proteins through recombinant expression. In particular, we provide protocols for the recombinant production of modified ubiquitin through amber suppression where fused Npu is used (1) as a traceless purification tag or (2) as a protein engineering tool to introduce C-terminal modifications for subsequent attachment to other proteins of interest. Our purification protocol allows for quick and facile separation of truncated products and eliminates the need for engineering protease cleavage sites. Our approach can be easily adapted to different proteins and applications where the simultaneous presence of internal and C-terminal modifications is desirable.

Report this publication

Statistics

Seen <100 times