Affordable Access

deepdyve-link
Publisher Website

Functionalization of alkyne-terminated thermally hydrocarbonized porous silicon nanoparticles with targeting peptides and antifouling polymers: effect on the human plasma protein adsorption.

Authors
  • Wang, Chang-Fang
  • Mäkilä, Ermei M
  • Bonduelle, Colin
  • Rytkönen, Jussi
  • Raula, Janne
  • Almeida, Sérgio
  • Närvänen, Ale
  • Salonen, Jarno J
  • Lecommandoux, Sebastien
  • Hirvonen, Jouni T
  • Santos, Hélder A
Type
Published Article
Journal
ACS Applied Materials & Interfaces
Publisher
American Chemical Society
Publication Date
Jan 28, 2015
Volume
7
Issue
3
Pages
2006–2015
Identifiers
DOI: 10.1021/am507827n
PMID: 25539741
Source
Medline
Keywords
License
Unknown

Abstract

Porous silicon (PSi) nanomaterials combine a high drug loading capacity and tunable surface chemistry with various surface modifications to meet the requirements for biomedical applications. In this work, alkyne-terminated thermally hydrocarbonized porous silicon (THCPSi) nanoparticles were fabricated and postmodified using five bioactive molecules (targeting peptides and antifouling polymers) via a single-step click chemistry to modulate the bioactivity of the THCPSi nanoparticles, such as enhancing the cellular uptake and reducing the plasma protein association. The size of the nanoparticles after modification was increased from 176 to 180-220 nm. Dextran 40 kDa modified THCPSi nanoparticles showed the highest stability in aqueous buffer. Both peptide- and polymer-functionalized THCPSi nanoparticles showed an extensive cellular uptake which was dependent on the functionalized moieties presented on the surface of the nanoparticles. The plasma protein adsorption study showed that the surface modification with different peptides or polymers induced different protein association profiles. Dextran 40 kDa functionalized THCPSi nanoparticles presented the least protein association. Overall, these results demonstrate that the "click" conjugation of the biomolecules onto the alkyne-terminated THCPSi nanoparticles is a versatile and simple approach to modulate the surface chemistry, which has high potential for biomedical applications.

Report this publication

Statistics

Seen <100 times