Affordable Access

deepdyve-link
Publisher Website

Functional neuroanatomy of mirroring during a unimanual force generation task.

Authors
  • Sehm, B
  • Perez, M A
  • Xu, B
  • Hidler, J
  • Cohen, L G
Type
Published Article
Journal
Cerebral Cortex
Publisher
Oxford University Press
Publication Date
Jan 01, 2010
Volume
20
Issue
1
Pages
34–45
Identifiers
DOI: 10.1093/cercor/bhp075
PMID: 19435709
Source
Medline
License
Unknown

Abstract

Performance of a unimanual motor task often induces involuntary mirror electromyographic (EMG) activity in the opposite, resting hand. In spite of the ubiquitous presence of mirroring, little is known regarding the underlying cortical contributions. Here, we used functional magnetic resonance imaging (fMRI) to study brain regions activated in association with parametric increases in right isometric wrist flexion force (10%, 20%, 30%, and 70%) in 12 healthy volunteers. During scanning, EMG activity was recorded bilaterally from flexor carpi radialis (FCR), extensor carpi radialis (ECR), biceps brachii (BB), and triceps brachii (TB). Mirror EMG was observed in left FCR during 20%, 30%, and 70% of force. Left ECR, BB, and TB showed mirror EMG only at 70% of force. Increasing force was associated with a linear increase of blood-oxygen-level-dependent (BOLD) signal in bilateral primary motor cortex (M1), supplementary motor area (SMA), caudal cingulate, and cerebellum. Mirroring in the left FCR correlated with activity in bilateral M1, SMA, and the cerebellum. Overall, our results suggest that activity in these regions might reflect sensorimotor processes operating in association with mirroring and suggest caution when interpreting fMRI activity in studies that involve unilateral force generation tasks in the absence of simultaneous bilateral EMG/kinematics measurements.

Report this publication

Statistics

Seen <100 times