Affordable Access

Functional magnetic resonance imaging with intermolecular multiple-quantum coherences.

Authors
Type
Published Article
Journal
Magnetic Resonance Imaging
0730-725X
Publisher
Elsevier
Publication Date
Volume
18
Issue
5
Pages
489–494
Identifiers
PMID: 10913709
Source
Medline
License
Unknown

Abstract

For the first time, we demonstrate here functional magnetic resonance imaging (fMRI) using intermolecular multiple-quantum coherences (iMQCs). iMQCs are normally not observed in liquid-state NMR because dipolar interactions between spins average to zero. If the magnetic isotropy of the sample is broken through the use of magnetic field gradients, dipolar couplings can reappear, and hence iMQCs can be observed. Conventional (BOLD) fMRI measures susceptibility variations averaged over each voxel. In the experiment performed here, the sensitivity of iMQCs to frequency variations over mesoscopic and well-defined distances is exploited. We show that iMQC contrast is qualitatively and quantitatively different from BOLD contrast in a visual stimulation task. While the number of activated pixels is smaller in iMQC contrast, the intensity change in some pixels exceeds that of BOLD contrast severalfold.

Statistics

Seen <100 times