Affordable Access

Free radical mechanism of oxidation of uroporphyrinogen in the presence of ferrous iron.

Published Article
Archives of biochemistry and biophysics
Publication Date
PMID: 2168153


Human porphyria cutanea tarda is an unusual consequence of common hepatic disorders such as alcoholic liver disease. Hepatic iron plays a key role in the expression of the metabolic lesions, i.e., defective hepatic decarboxylation of porphyrinogens, catalyzed by uroporphyrinogen decarboxylase. This prompted the present study to determine the in vitro effects of iron on the uroporphyrinogen substrate in the absence and presence of atmospheric oxygen. We observed that (i) unless oxygen is the limiting reactant, autoxidation of ferrous iron and iron-catalyzed oxidation of uroporphyrinogen occurred soon after initiating the reaction at pH 7.4 and 30 degrees C in buffers which are non- or poor chelators of iron; (ii) the rates of uroporphyrinogen oxidation were proportional to the initial concentration of ferrous ion; (iii) about 70% of the oxidations of uroporphyrinogen were accountable due to a free-radical chain reaction pathway involving superoxide radical and hence inhibitable by superoxide dismutase; (iv) uroporphyrinogen could be further oxidized to completion by the hydroxyl radical since the reaction was partially inhibited by both mannitol and catalase which prevent hydroxyl radical production; (v) the oxidizing effects of ferric ion on uroporphyrinogen were none or negligible as compared to those of ferrous ion. Ferric was reduced to ferrous ion in the presence of dithiothreitol. When the ferrous ion thus formed was reoxidized in the presence of atmospheric oxygen, minor but definite oxidations of both uroporphyrinogen and dithiothreitol were observed. The oxidations of Fe2+ and uroporphyrinogen could be blocked by 1,10-phenanthroline, a ferrous iron chelator. The data suggest that ferrous is the reactive form of iron that may contribute to pathogenic development of the disease by irreversibly oxidizing the porphyrinogen substrates to nonmetabolizable porphyrins, which accumulate in porphyric liver.


Seen <100 times