On Fourier Series on the Torus and Fourier Transforms
- Authors
- Type
- Published Article
- Journal
- Mathematical Notes
- Publisher
- Pleiades Publishing
- Publication Date
- Nov 01, 2021
- Volume
- 110
- Issue
- 5-6
- Pages
- 767–772
- Identifiers
- DOI: 10.1134/S0001434621110134
- Source
- Springer Nature
- Keywords
- Disciplines
- License
- Yellow
Abstract
Abstract The question of the representability of a continuous function on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb R^d$$\end{document} in the form of the Fourier integral of a finite Borel complex-valued measure on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb R^d$$\end{document} is reduced in this article to the same question for a simple function. This simple function is determined by the values of the given function on the integer lattice \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb R^d$$\end{document}. For \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=1$$\end{document}, this result is already known: it is an inscribed polygonal line. The article also describes applications of the obtained theorems to multiple trigonometric Fourier series.