Affordable Access

deepdyve-link
Publisher Website

Four-point renormalized coupling constant in O(N) models

Authors
  • Campostrini, M.
  • Pelissetto, A.
  • Rossi, P.
  • Vicari, E.
Type
Published Article
Publication Date
Sep 05, 1995
Submission Date
Sep 05, 1995
Identifiers
DOI: 10.1016/0920-5632(96)00166-1
Source
arXiv
License
Unknown
External links

Abstract

The renormalized zero-momentum four-point coupling $g_r$ of $O(N)$-invariant scalar field theories in $d$ dimensions is studied by applying the $1/N$ expansion and strong coupling analysis. The $O(1/N)$ correction to the $\beta$-function and to the fixed point value $g_r^*$ are explictly computed. Strong coupling series for lattice non-linear $\sigma$ models are analyzed near criticality in $d=2$ and $d=3$ for several values of $N$ and the corresponding values of $g_r^*$ are extracted. Large-$N$ and strong coupling results are compared with each other, finding a good general agreement. For small $N$ the strong coupling analysis in 2-d gives the best determination of $g^*_r$ to date (or comparable for $N=2,3$ with the available Monte Carlo estimates), and in 3-d it is consistent with available $\phi^4$ field theory results.

Report this publication

Statistics

Seen <100 times