Affordable Access

deepdyve-link deepdyve-link
Publisher Website

Forward modeling of metal complexation by NOM: II. prediction of binding site properties.

Authors
Type
Published Article
Journal
Environmental Science & Technology
1520-5851
Publisher
American Chemical Society
Publication Date
Volume
45
Issue
8
Pages
3202–3209
Identifiers
DOI: 10.1021/es102408w
PMID: 21087041
Source
Medline
License
Unknown

Abstract

An a priori model of metal complexation by natural organic matter (NOM) has previously been shown to predict experimental data at pH 7.0 and 0.1 M ionic strength (Cabaniss, S. E. Environ. Sci. Technol. 2009). Unlike macroscopic models based only on stoichiometry and thermodynamics, this a priori model also predicts the ligand groups and properties of complexed (occupied) molecules. Ligand molecules with strong binding sites form complexes at low metal concentrations and have average properties (molecular weight, charge, aromaticity) which can differ significantly from the average properties of bulk NOM. Cu(II), Ni(II) and Pb(II) preferentially bind to strong amine-containing sites which are often located on small (MW < 1000), lower-aromaticity molecules. Cd(II) and Zn(II) show generally weaker binding, although they also prefer amine-containing sites to pure carboxylates and bind to smaller, less aromatic molecules. Ca(II) shows no real preference for amine over carboxylate ligand groups, preferentially binding to larger and more negatively charged molecules. Al(III) has a unique preference for phenol-containing sites and larger, more aromatic molecules. While some predictions of this model are consistent with a variety of experimental data from the literature, others await validation by molecular-level analysis.

Statistics

Seen <100 times