Affordable Access

The FO2 alternation hierarchy is decidable

Authors
Publication Date
Source
Dagstuhl Research Online Publication Server
Keywords
  • First-Order Logic, Regular Language, Automata Theory, Semigroup, Ranker
  • Data Processing Computer Science
External links

Abstract

We consider the two-variable fragment FO2[<] of first-order logic over finite words. Numerous characterizations of this class are known. Therien and Wilke have shown that it is decidable whether a given regular language is definable in FO2[<]. From a practical point of view, as shown by Weis, FO2[<] is interesting since its satisfiability problem is in NP. Restricting the number of quantifier alternations yields an infinite hierarchy inside the class of FO2[<]-definable languages. We show that each level of this hierarchy is decidable. For this purpose, we relate each level of the hierarchy with a decidable variety of finite monoids. Our result implies that there are many different ways of climbing up the FO2[<]-quantifier alternation hierarchy: deterministic and co-deterministic products, Mal'cev products with definite and reverse definite semigroups, iterated block products with J-trivial monoids, and some inductively defined omega-term identities. A combinatorial tool in the process of ascension is that of condensed rankers, a refinement of the rankers of Weis and Immerman and the turtle programs of Schwentick, Therien, and Vollmer.

There are no comments yet on this publication. Be the first to share your thoughts.

Statistics

Seen <100 times
0 Comments