Affordable Access

deepdyve-link
Publisher Website

Fluorogen-activating scFv biosensors target surface markers on live cells via streptavidin or single-chain avidin.

Authors
  • Gallo, Eugenio
  • Jarvik, Jonathan
Type
Published Article
Journal
Molecular biotechnology
Publication Date
Jul 01, 2014
Volume
56
Issue
7
Pages
585–590
Identifiers
DOI: 10.1007/s12033-014-9732-6
PMID: 24562573
Source
Medline
License
Unknown

Abstract

Fluorescence biosensors are indispensable tools for understanding protein behavior and function in cells. Recent advancements utilize fluorogen-activating-proteins (FAPs) that form complexes with small organic molecules (fluorogens) and result in their fluorescence activation. The technology has found multiple uses in protein discovery applications; however, the current method of detection requires the expression of FAPs as gene fusion tags in cells-a process that is time- and labor-intensive. In this report, we present an alternate method that utilizes FAPs as affinity reagents. Accordingly, we isolated soluble reagents based on FAP fusions with streptavidin (Strep) or avidin proteins, both highly selective for biotin. When tested in vitro, the reagents displayed bi-functional activity, fluorogen activation, and biotin affinity. For live-cell protein discovery, surface targets were biotinylated via biotin-tagged immunoglobulins or a genetically encoded biotin acceptor peptide. As a result, when the cells were labeled with FAP-Strep or FAP-avidin reagent, the in vivo fluorescence measurements indicated high target specificity, minimal background, and bright signal detection. In summary, we present a novel FAP reagent platform that offers a rapid and efficient approach for cell surface protein detection.

Report this publication

Statistics

Seen <100 times