Affordable Access

deepdyve-link
Publisher Website

Fluorescence modulation of an aggregation-induced emission active ligand via rigidification in a coordination polymer and its application in singlet oxygen sensing

Authors
  • Dalapati, Rana
  • Nandi, Soutick
  • Van Hecke, Kristof
  • Biswas, Shyam
Publication Date
Jan 01, 2019
Identifiers
DOI: 10.1021/acs.cgd.9b00868
OAI: oai:archive.ugent.be:8645654
Source
Ghent University Institutional Archive
Keywords
Language
English
License
Unknown
External links

Abstract

A new Zn(II)-based coordination polymer (CP) having the formula [Zn(L)(2,2'-bpy)] (1) was synthesized using ZnCl2, 3,3'-(anthracene-9,10-diyl)diacrylic acid ligand (H2L), and 2,2'-bipyridine (2,2'-bpy) in DMF under solvothermal conditions. Here, the anthracene-based dicarboxylic acid ligand shows aggregation-induced emission (AIE) activity in an ethanol/hexane medium. Single-crystal X-diffraction analysis reveals that the one-dimensional (1D) zigzag chainlike structure of 1 is assembled from tetrahedrally coordinated Zn2+ ions interconnected by 2,2'-bpy and ditopic anthracene-based ligand molecules. The crystal structure analysis reveals that the ditopic anthracene-based flexible ligand adopts a twisted conformation in the CP crystal compared to its free state. Because of the twisted conformation of the ATE active ligand in the CP crystal, a large (similar to 80 nm) hypsochromic shift was observed in the emission spectrum with a drastic color change compared to the free state of ligand. The origin of these rare fluorescence properties is ascribed to the twisted diacrylic acid ligand conformation and rigidity in the CP crystal. An unprecedented response was observed toward singlet oxygen (O-1(2)) by 1 via a fluorescence turn-off mechanism. The presence of the anthracene moiety is the main influential factor for O-1(2) sensing, which undergoes [4 + 2] cycloaddition reaction with O-1(2), producing a nonemissive 9,10-endoperoxide product. The unique photoluminescence properties along with tunable fluorescence responses indicate that incorporating an AIE active anthracene core into the CP crystal is a beneficial strategy to develop new fluorescent materials with significant sensing ability.

Report this publication

Statistics

Seen <100 times