Affordable Access

Fluorescence lifetime distributions of diphenylhexatriene-labeled phosphatidylcholine as a tool for the study of phospholipid-cholesterol interactions.

  • E Kalb
  • F Paltauf
  • A Hermetter
Publication Date
Dec 01, 1989


Fluorescence lifetimes of 1-palmitoyl-2-diphenylhexatrienylpro-pionyl-phosphatidylc hol ine in vesicles of palmitoyloleoyl phosphatidylcholine (POPC) (1:300, mol/mol) in the liquid crystalline state were determined by multifrequency phase fluorometry. On the basis of statistic criteria (chi 2red) the measured phase angles and demodulation factors were equally well fitted to unimodal Lorentzian, Gaussian, or uniform lifetime distributions. No improvement in chi 2red could be observed if the experimental data were fitted to bimodal Lorentzian distributions or a double exponential decay. The unimodal Lorentzian lifetime distribution was characterized by a lifetime center of 6.87 ns and a full width at half maximum of 0.57 ns. Increasing amounts of cholesterol in the phospholipid vesicles (0-50 mol% relative to POPC) led to a slight increase of the lifetime center (7.58 ns at 50 mol% sterol) and reduced significantly the distributional width (0.14 ns at 50 mol% sterol). Lifetime distributions of POPC-cholesterol mixtures containing greater than 20 mol% sterol were within the resolution limit and could not be distinguished from monoexponential decays on the basis of chi 2red. Cholesterol stabilizes and rigidifies phospholipid bilayers in the fluid state. Considering its effect on lifetime distributions of fluorescent phospholipids it may also act as a membrane homogenizer.

Report this publication


Seen <100 times