Affordable Access

Fluctuations and the Hofmeister effect.

  • A Neagu
  • M Neagu
  • A Dér
Publication Date
Sep 01, 2001
  • Biology
  • Mathematics
  • Physics


The Hofmeister effect consists in changes of protein solubility triggered by neutral electrolyte cosolutes. Based on the assumption that salts cause stochastic fluctuations of the free energy barrier profiles, a kinetic theory of this phenomenon is proposed. An exponentially correlated noise, of amplitude proportional to the salt concentration, is added to each energy level, and the time-dependence of the mean protein concentration is calculated. It is found that the theory yields the well-known Setschenow equation if the noise correlation time is low in comparison to the aggregation time constant. Experimental data on salting-in agents are well fitted, whereas, in the case of salting-out cosolutes, two independent dichotomic fluctuations are needed to fit the data. This may result from the fact that, in both cases, the low-concentration regime is dominated by salting-in electrostatic contributions, whereas, at high salt concentrations, electron donor/acceptor interactions become important; these have opposite effects. The theory offers a novel way to metricate Hofmeister effects and also leads to thermodynamic quantities, which account for the influence of salts. The formalism may also be applied to describe kinetic phenomena in the presence of cosolutes.


Seen <100 times