Affordable Access

deepdyve-link
Publisher Website

Flow and particle dispersion in a pulmonary alveolus--part I: velocity measurements and convective particle transport.

Authors
  • Chhabra, Sudhaker
  • Prasad, Ajay K
Type
Published Article
Journal
Journal of Biomechanical Engineering
Publisher
ASME International
Publication Date
May 01, 2010
Volume
132
Issue
5
Pages
51009–51009
Identifiers
DOI: 10.1115/1.4001112
PMID: 20459210
Source
Medline
License
Unknown

Abstract

The alveoli are the smallest units of the lung that participate in gas exchange. Although gas transport is governed primarily by diffusion due to the small length scales associated with the acinar region (approximately 500 microm), the transport and deposition of inhaled aerosol particles are influenced by convective airflow patterns. Therefore, understanding alveolar fluid flow and mixing is a necessary first step toward predicting aerosol transport and deposition in the human acinar region. In this study, flow patterns and particle transport have been measured using a simplified in-vitro alveolar model consisting of a single alveolus located on a bronchiole. The model comprises a transparent elastic 5/6 spherical cap (representing the alveolus) mounted over a circular hole on the side of a rigid circular tube (representing the bronchiole). The alveolus is capable of expanding and contracting in phase with the oscillatory flow through the tube. Realistic breathing conditions were achieved by exercising the model at physiologically relevant Reynolds and Womersley numbers. Particle image velocimetry was used to measure the resulting flow patterns in the alveolus. Data were acquired for five cases obtained as combinations of the alveolar-wall motion (nondeforming/oscillating) and the bronchiole flow (none/steady/oscillating). Detailed vector maps at discrete points within a given cycle revealed flow patterns, and transport and mixing of bronchiole fluid into the alveolar cavity. The time-dependent velocity vector fields were integrated over multiple cycles to estimate particle transport into the alveolar cavity and deposition on the alveolar wall. The key outcome of the study is that alveolar-wall motion enhances mixing between the bronchiole and the alveolar fluid. Particle transport and deposition into the alveolar cavity are maximized when the alveolar wall oscillates in tandem with the bronchiole fluid, which is the operating case in the human lung.

Report this publication

Statistics

Seen <100 times