Fixed point results using weak αw\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _w$$\end{document}-admissible mapping in Gb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_b$$\end{document}-metric spaces with applications
- Authors
- Type
- Published Article
- Journal
- Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas
- Publisher
- Springer International Publishing
- Publication Date
- Jan 03, 2022
- Volume
- 116
- Issue
- 1
- Identifiers
- DOI: 10.1007/s13398-021-01201-5
- Source
- Springer Nature
- Keywords
- Disciplines
- License
- Yellow
Abstract
In this paper, we propose a new kind of non-linear contraction mappings in the structure of Gb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_b$$\end{document}-metric spaces. Some related fixed point results are proved for such mappings. Our results extend, generalize and modify many famous results that exist in literature. As applications, these are used in the problems of spring mass system and non-linear integral equations.