Affordable Access

deepdyve-link
Publisher Website

Feasibility of Dose-reduced Chest CT with Photon-counting Detectors: Initial Results in Humans.

Authors
  • Symons, Rolf1
  • Pourmorteza, Amir1
  • Sandfort, Veit1
  • Ahlman, Mark A1
  • Cropper, Tracy1
  • Mallek, Marissa1
  • Kappler, Steffen1
  • Ulzheimer, Stefan1
  • Mahesh, Mahadevappa1
  • Jones, Elizabeth C1
  • Malayeri, Ashkan A1
  • Folio, Les R1
  • Bluemke, David A1
  • 1 From the Department of Radiology and Imaging Sciences, National Institutes of Health Clinical Center, 10 Center Dr, Bethesda, MD 20892 (R.S., A.P., V.S., M.A.A., T.C., M. Mallek, E.C.J., A.A.M., L.R.F., D.A.B.); Siemens Healthcare, Forchheim, Germany (S.K., S.U.); and Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Md (M. Mahesh). , (Germany)
Type
Published Article
Journal
Radiology
Publisher
Radiological Society of North America
Publication Date
Dec 01, 2017
Volume
285
Issue
3
Pages
980–989
Identifiers
DOI: 10.1148/radiol.2017162587
PMID: 28753389
Source
Medline
License
Unknown

Abstract

Purpose To investigate whether photon-counting detector (PCD) technology can improve dose-reduced chest computed tomography (CT) image quality compared with that attained with conventional energy-integrating detector (EID) technology in vivo. Materials and Methods This was a HIPAA-compliant institutional review board-approved study, with informed consent from patients. Dose-reduced spiral unenhanced lung EID and PCD CT examinations were performed in 30 asymptomatic volunteers in accordance with manufacturer-recommended guidelines for CT lung cancer screening (120-kVp tube voltage, 20-mAs reference tube current-time product for both detectors). Quantitative analysis of images included measurement of mean attenuation, noise power spectrum (NPS), and lung nodule contrast-to-noise ratio (CNR). Images were qualitatively analyzed by three radiologists blinded to detector type. Reproducibility was assessed with the intraclass correlation coefficient (ICC). McNemar, paired t, and Wilcoxon signed-rank tests were used to compare image quality. Results Thirty study subjects were evaluated (mean age, 55.0 years ± 8.7 [standard deviation]; 14 men). Of these patients, 10 had a normal body mass index (BMI) (BMI range, 18.5-24.9 kg/m2; group 1), 10 were overweight (BMI range, 25.0-29.9 kg/m2; group 2), and 10 were obese (BMI ≥30.0 kg/m2, group 3). PCD diagnostic quality was higher than EID diagnostic quality (P = .016, P = .016, and P = .013 for readers 1, 2, and 3, respectively), with significantly better NPS and image quality scores for lung, soft tissue, and bone and with fewer beam-hardening artifacts (all P < .001). Image noise was significantly lower for PCD images in all BMI groups (P < .001 for groups 1 and 3, P < .01 for group 2), with higher CNR for lung nodule detection (12.1 ± 1.7 vs 10.0 ± 1.8, P < .001). Inter- and intrareader reproducibility were good (all ICC > 0.800). Conclusion Initial human experience with dose-reduced PCD chest CT demonstrated lower image noise compared with conventional EID CT, with better diagnostic quality and lung nodule CNR. © RSNA, 2017 Online supplemental material is available for this article.

Report this publication

Statistics

Seen <100 times