Affordable Access

Download Read

Source-side syntactic reordering patterns with functional words for improved phrase-based SMT

Authors
Publisher
Association for Computational Linguistics
Keywords
  • Machine Translating

Abstract

Inspired by previous source-side syntactic reordering methods for SMT, this paper focuses on using automatically learned syntactic reordering patterns with functional words which indicate structural reorderings between the source and target language. This approach takes advantage of phrase alignments and source-side parse trees for pattern extraction, and then filters out those patterns without functional words. Word lattices transformed by the generated patterns are fed into PBSMT systems to incorporate potential reorderings from the inputs. Experiments are carried out on a medium-sized corpus for a Chinese–English SMT task. The proposed method outperforms the baseline system by 1.38% relative on a randomly selected testset and 10.45% relative on the NIST 2008 testset in terms of BLEU score. Furthermore, a system with just 61.88% of the patterns filtered by functional words obtains a comparable performance with the unfiltered one on the randomly selected testset, and achieves 1.74% relative improvements on the NIST 2008 testset.

There are no comments yet on this publication. Be the first to share your thoughts.