# In search of a characterization of the preference for safety under the Choquet model.

- Authors

## Abstract

Victor prefers safety more than Ursula if whenever Ursula prefers some constant to some uncertain act, so does Victor. This paradigm, whose Expected Utility version takes the form of Arrow & Pratt's more risk averse concept, will be studied in the Choquet Uncertainty model, letting u and ? (v and ?) be Ursula's (Victor's) utility and capacity. A necessary and sufficient condition (A) on the pairs (u, ?) and (v, ?) will be presented for dichotomous weak increased uncertainty aversion, the preference by Victor of a constant over a dichotomous act whenever such is the preference of Ursula. This condition, pointwise inequality between a function defined in terms of v (u-1(.)) and another defined purely in terms of the capacities, preserves the flavor of the "more pessimism than greediness" characterization of monotone risk aversion by Chateauneuf, Cohen & Meilijson in the Rank-dependent Utility Model and its extension by Grant & Quiggin to the Choquet Utility Model. A sufficient condition (B) in terms of the capacities only, satisfied in particular if ? (.) = f (? (.))for some convex f, will be presented for more simplicity seeking, the preference by Victor over any act for some dichotomous act, that leaves Ursula indifferent. Condition A is thus a characterization of weak increased uncertainty aversion for convex f. An example will be exhibited disproving the more far reaching conjecture under which the dichotomous case implies the general case.

## There are no comments yet on this publication. Be the first to share your thoughts.