Affordable Access

A fast and efficient colocalization algorithm for identifying shared genetic risk factors across multiple traits.

Authors
  • Foley, Christopher
  • Staley, James R
  • Breen, Philip G
  • Sun, Benjamin B
  • Kirk, Paul
  • Burgess, Stephen
  • Howson, Joanna MM
Publication Date
Jan 05, 2021
Source
Apollo - University of Cambridge Repository
Keywords
Language
English
License
Unknown
External links

Abstract

Genome-wide association studies (GWAS) have identified thousands of genomic regions affecting complex diseases. The next challenge is to elucidate the causal genes and mechanisms involved. One approach is to use statistical colocalization to assess shared genetic aetiology across multiple related traits (e.g. molecular traits, metabolic pathways and complex diseases) to identify causal pathways, prioritize causal variants and evaluate pleiotropy. We propose HyPrColoc (Hypothesis Prioritisation in multi-trait Colocalization), an efficient deterministic Bayesian algorithm using GWAS summary statistics that can detect colocalization across vast numbers of traits simultaneously (e.g. 100 traits can be jointly analysed in around 1 second). We perform a genome-wide multi-trait colocalization analysis of coronary heart disease (CHD) and fourteen related traits, identifying 43 regions in which CHD colocalized with ≥1 trait, including 5 previously unknown CHD loci. Across the 43 loci, we further integrate gene and protein expression quantitative trait loci to identify candidate causal genes.

Report this publication

Statistics

Seen <100 times