Affordable Access

Access to the full text

On a Family of Volterra Cubic Stochastic Operators

Authors
  • Kurganov, K. A.1
  • Jamilov, U. U.2, 3, 4
  • Okhunova, M. O.1
  • 1 Faculty of Mathematics, National University of Uzbekistan, Tashkent, 100174, Uzbekistan , Tashkent (Uzbekistan)
  • 2 V. I. Romanovskiy Institute of Mathematics, Uzbekistan Academy of Sciences, Tashkent, 100174, Uzbekistan , Tashkent (Uzbekistan)
  • 3 Akfa University, Tashkent, 100095, Uzbekistan , Tashkent (Uzbekistan)
  • 4 National University of Uzbekistan, Tashkent, 100174, Uzbekistan , Tashkent (Uzbekistan)
Type
Published Article
Journal
Lobachevskii Journal of Mathematics
Publisher
Pleiades Publishing
Publication Date
Dec 13, 2021
Volume
42
Issue
12
Pages
2867–2875
Identifiers
DOI: 10.1134/S1995080221120222
Source
Springer Nature
Keywords
Disciplines
  • Article
License
Yellow

Abstract

AbstractIn present paper we consider a family of discrete time Kolmogorov systems of three interaction population depending on a parameter \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta$$\end{document}. We show that there is the critic value \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta^{*}$$\end{document} of parameter \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta$$\end{document} such that for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta\in(\theta^{*},1]$$\end{document} this evolution operator is a non-ergodic transformation and for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta\in[0,\theta^{*})$$\end{document} it has property being regular. We give some biological interpretations of our results.

Report this publication

Statistics

Seen <100 times