Affordable Access

Facilitation of actin polymerization by interfilamentous factors.

Authors
  • Cervén, E
Type
Published Article
Journal
Journal of muscle research and cell motility
Publication Date
Feb 01, 1987
Volume
8
Issue
1
Pages
23–29
Identifiers
PMID: 3597762
Source
Medline
License
Unknown

Abstract

The polymerization of actin in low ionic strength buffer at 0 degrees C in the presence of 0.25 mM Mg2+ was studied by viscometry, turbidity and absorbance at 232 nm. Under these conditions, significant polymerization occurred only in the viscometer and not in isotropic mixtures. The polymerization rate with 0.25 mM MgCl2, as judged from shear viscosity, was equal to or greater than that observed with 0.1 M KCl and 0.25 mM MgCl2 at 0 degrees C, and was characterized by a longer nucleation period. Measurements of the turbidity at 350 nm (detecting filament formation and aggregation) and the absorbance at 232 nm (detecting conformational changes of the G-F transition) showed no evidence for polymerization or nucleation in a bulk solution at 0 degrees C when Mg2+ was added to 0.25 mM and, furthermore, F-actin nuclei were ineffective as seeds under these conditions. However, nucleation and polymerization by these criteria could be induced by raising the temperature to 20 degrees C. These results demonstrate the existence of narrow conditions when elongation of F-actin is dissociated from nucleation of oligomeric acceptor nuclei, even if monitored on the sub-molecular level (absorbance at 232 nm). Under these conditions, elongation appears to require anisotropic F-actin, i.e. that filaments are ordered by laminar flow.

Report this publication

Statistics

Seen <100 times