Affordable Access

Publisher Website

Facile synthesis of lignin-based Fe-MOF for fast adsorption of methyl orange.

Authors
  • Wang, Chao1
  • Feng, Xuezhen2
  • Tian, Yabing2
  • Huang, Xujuan3
  • Shang, Shibin2
  • Liu, He2
  • Song, Zhanqian2
  • Zhang, Haibo4
  • 1 Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing, 210042, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China. , (China)
  • 2 Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing, 210042, China. , (China)
  • 3 School of Chemical and Chemistry, Yancheng Institute of Technology, Jiangsu Province, Yancheng, 210042, China. , (China)
  • 4 Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing, 210042, China. Electronic address: [email protected]. , (China)
Type
Published Article
Journal
Environmental Research
Publisher
Elsevier
Publication Date
Jun 15, 2024
Volume
251
Issue
Pt 2
Pages
118651–118651
Identifiers
DOI: 10.1016/j.envres.2024.118651
PMID: 38479718
Source
Medline
Keywords
Language
English
License
Unknown

Abstract

To rapidly remove dyes from wastewater, iron-based metal-organic frameworks modified with phenolated lignin (NH2-MIL@L) were prepared by a one-step hydrothermal method. Analyses of the chemical structure and adsorption mechanism of the NH2-MIL@L proved the successful introduction of lignin and the enhancement of its adsorption sites. Compared with NH2-MIL-101-Fe without phenolated lignin, the modification with lignin increased the methyl orange (MO) adsorption rate of NH2-MIL@L. For the best adsorbent, NH2-MIL@L4, the MO adsorption efficiency in MO solution reached 95.09% within 5 min. NH2-MIL@L4 reached adsorption equilibrium within 90 min, exhibiting an MO adsorption capacity of 195.31 mg/g. The process followed pseudo-second-order kinetics and the Dubinin-Radushkevich model. MO adsorption efficiency of NH2-MIL@L4 was maintained at 89.87% after six adsorption-desorption cycles. In mixed solutions of MO and methylene blue (MB), NH2-MIL@L4 achieved an MO adsorption of 94.02% at 5 min and reached MO adsorption equilibrium within 15 min with an MO adsorption capacity of 438.6 mg/g, while the MB adsorption equilibrium was established at 90 min with an MB adsorption rate and capacity of 95.60% and 481.34 mg/g, respectively. NH2-MIL@L4 sustained its excellent adsorption efficiency after six adsorption-desorption cycles (91.2% for MO and 93.4% for MB). The process of MO adsorption by NH2-MIL@L4 followed the Temkin model and pseudo-second-order kinetics, while MB adsorption followed the Dubinin-Radushkevich model and pseudo-second-order kinetics. Electrostatic interactions, π-π interactions, hydrogen bonding, and synergistic interactions affected the MO adsorption process of NH2-MIL@L4. Copyright © 2024 Elsevier Inc. All rights reserved.

Report this publication

Statistics

Seen <100 times