Affordable Access

Publisher Website

Facile preparation and bifunctional imaging of Eu-doped GdPO4 nanorods with MRI and cellular luminescence.

Authors
Type
Published Article
Journal
Dalton Transactions
1477-9234
Publisher
The Royal Society of Chemistry
Publication Date
Volume
44
Issue
9
Pages
3934–3940
Identifiers
DOI: 10.1039/c4dt03444a
PMID: 25630852
Source
Medline

Abstract

The biocompatibility of multifunctional nanomaterials is very important for their clinical applications. Herein, the hexagonal crystal Eu-doped GdPO4 nanorods (NRs) in the template of silk fibroin (SF) peptides are successfully synthesized via a mineralization process. The sizes of the Eu-doped GdPO4 NRs with SF peptides (SF-NRs) are ∼150 nm in length and ∼10 nm in diameter. The Eu-doped SF-NRs have strong pink luminescence and a mass magnetic susceptibility value of 1.27 emu g(-1) in 20,000 G of magnetic field due to Eu ion doping. The cell test indicates that the Eu-doped SF-NRs obviously promote the viability of cells at an NR concentration of 25-200 μg mL(-1). A growth mechanism of Eu-doped GdPO4 SF-NRs is proposed to explain their strong cellular luminescence, magnetic resonance (MR) imaging and good cyto-compatibility. Compared to NRs without SF, the Eu-doped SF-NRs not only exhibit a higher effective positive signal-enhancement ability (the longitudinal relaxivity r1 value is 1.38 (Gd mM s)(-1)) and in vivo T1 weighted MR imaging enhancement under a 7.0 T MRI system, but also show the better luminescence imaging of living cells under the fluorescence microscope. This indicates that the Eu-doped SF-NRs have potential as T1 MRI contrast agents and optical imaging probes.

There are no comments yet on this publication. Be the first to share your thoughts.

Statistics

Seen <100 times
0 Comments