Affordable Access

Publisher Website

Effect of Hydrogen Peroxide and Superoxide Anions on Cytosolic Ca2+: Comparison of Endothelial Cells from Large-Sized and Small-Sized Arteries

Public Library of Science
Publication Date
DOI: 10.1371/journal.pone.0025432
  • Research Article
  • Biology
  • Anatomy And Physiology
  • Cell Physiology
  • Molecular Cell Biology
  • Cellular Stress Responses
  • Medicine
  • Cardiovascular
  • Cardiovascular Pharmacology
  • Drugs And Devices


We compared the Ca2+ responses to reactive oxygen species (ROS) between mouse endothelial cells derived from large-sized arteries, aortas (aortic ECs), and small-sized arteries, mesenteric arteries (MAECs). Application of hydrogen peroxide (H2O2) caused an increase in cytosolic Ca2+ levels ([Ca2+]i) in both cell types. The [Ca2+]i rises diminished in the presence of U73122, a phospholipase C inhibitor, or Xestospongin C (XeC), an inhibitor for inositol-1,4,5-trisphosphate (IP3) receptors. Removal of Ca2+ from the bath also decreased the [Ca2+]i rises in response to H2O2. In addition, treatment of endothelial cells with H2O2 reduced the [Ca2+]i responses to subsequent challenge of ATP. The decreased [Ca2+]i responses to ATP were resulted from a pre-depletion of intracellular Ca2+ stores by H2O2. Interestingly, we also found that Ca2+ store depletion was more sensitive to H2O2 treatment in endothelial cells of mesenteric arteries than those of aortas. Hypoxanthine-xanthine oxidase (HX-XO) was also found to induce [Ca2+]i rises in both types of endothelial cells, the effect of which was mediated by superoxide anions and H2O2 but not by hydroxyl radical. H2O2 contribution in HX-XO-induced [Ca2+]i rises were more significant in endothelial cells from mesenteric arteries than those from aortas. In summary, H2O2 could induce store Ca2+ release via phospholipase C-IP3 pathway in endothelial cells. Resultant emptying of intracellular Ca2+ stores contributed to the reduced [Ca2+]i responses to subsequent ATP challenge. The [Ca2+]i responses were more sensitive to H2O2 in endothelial cells of small-sized arteries than those of large-sized arteries.

There are no comments yet on this publication. Be the first to share your thoughts.