Affordable Access

Publisher Website

Effects of Canola Oil Dilution on Anhydrous Milk Fat Crystallization and Fractionation Behavior

Journal of Dairy Science
American Dairy Science Association
DOI: 10.3168/jds.s0022-0302(05)72871-x
  • Dairy Foods


Abstract Blends of anhydrous milk fat (AMF) and canola oil (CO) were cooled from 35 to 5°C at 0.1°C/min, held for 24h, and centrifuged to separate the liquid and crystalline fractions. The blends’ crystallization behaviors and microstructures depended on the level of CO present. Onset and half times of crystallization reflected a slower crystallization mechanism at higher levels of CO dilution. These differences were accompanied by a change in microstructure from large spherulites to smaller particles. The biggest change occurred between the 1:4 and 1:5 blends. Canola oil dilution also influenced the polymorphism of milk fat. Whereas only the β′ polymorph was observed in the crystallized 1:2 blend, the β polymorph predominated in the 1:8 blend. Some solubilization of AMF solids into CO was observed. This increased gradually with increasing CO concentration. Compositional analysis revealed the exchange of AMF and CO species between the liquid and crystalline fractions. The crystalline fractions were slightly enriched in AMF triacylglycerols, particularly with the more dilute blends (1:7 and 1:8). Large amounts of oil were trapped in the crystalline fractions, particularly for the concentrated AMF:CO blends where the β′ crystals and spherulitic microstructures were observed. Although the solid fat content profiles of the fractionated blends were marginally higher than those of the starting blends, the samples were very soft and oily. This strategy of using CO to fractionate milk fat was limited by the poor separation of solids and liquid during centrifugation.

There are no comments yet on this publication. Be the first to share your thoughts.