Affordable Access

Publisher Website

The thyrotropin receptor, a GPCR with a built-in inverse agonist

International Congress Series
Publication Date
DOI: 10.1016/s0531-5131(03)00603-4
  • Gpcr
  • Glycoprotein Hormone Receptors
  • Constitutive Activation
  • Inverse Agonist
  • 7Tm Receptors
  • Biology
  • Law


Abstract The thyrotropin receptor (TSHr) is a member of the glycoprotein hormone receptors (GPHR), themselves, part of the rhodopsin-like G protein-coupled receptor family. The GPHR are characterized by a large aminoterminal extracellular extension responsible for the recognition and binding of their dimeric 30 kDa agonists (glycoprotein hormones thyrotropin (TSH), lutropin/chorionic gonadotropin (LH/CG) or follitropin (FSH)). This ectodomain is composed of a central portion made of nine leucine-rich motifs and two flanking domains containing several disulfide bridges. In addition of encoding the specificity for hormone recognition, the ectodomain has been shown to exert an inhibitory constraint on the constitutionally active serpentine portion of the receptor coupled in priority to Gsα. This conclusion was reached from experiments with receptor constructs harboring truncated ectodomains, which displayed an increase in their constitutive activity. When compared with the wild type receptor maximally stimulated by TSH or the most active mutants of the ectodomain (e.g. Ser281Leu), the truncated constructs showed only partial activation. Interestingly, the “beheaded” receptor could be further activated by mutations affecting the transmembrane helices of the serpentine but not by selected mutations in the exoloops of the serpentine, which are known to be potent activators of the holoreceptor. From these observations, we propose a model for TSHr activation in which binding of the agonist would switch the ectodomain from a tethered inverse agonist into a tethered agonist.

There are no comments yet on this publication. Be the first to share your thoughts.