Affordable Access

PREDIKSI PENGGUNA BUS TRANS SARBAGITA DENGAN METODE ADAPTIVE NEURO FUZZY INFERENCE SYSTEM

Authors
Publisher
E-Jurnal Matematika
Publication Date
Keywords
  • Anfis
  • Fuzzy Inference System
  • Error Backpropagation Algorithm
Disciplines
  • Computer Science

Abstract

Trans Sarbagita is a public transportation services people at Denpasar, Badung, Gianyar and Tabanan. Trans Sarbagita is aimed to resolve a problems caused by accretion volume of vehicles in Bali. This study conducted to forecast the number of Trans Sarbagita passengers in 2013 using ANFIS. The ANFIS system composed by five layers where each layers has a different function and its divide in two phases, i.e. forward and backward phases. The ANFIS uses a hybrid learning algorithm which is a combination of Least Squares Estimator (LSE) on forwards phases and Error Backpropagation (EBP) on the backward phases. The results show, ANFIS with six inputs with M.F of Pi produces smallest error, compared to seven and eight input and M.F gauss and generalizedbell. Forecast of Trans Sarbagita passenger numbers in 2013 have to fluctuated every day and the average of passenger’s Trans Sarbagita for a day is 1627 passengers with MSE equal to 10210 and MAPE is 4.01%.

There are no comments yet on this publication. Be the first to share your thoughts.